What to me seems a long while back, I wrote an article on Hibernate. Spring was just beginning to take root, and everyone was raving about POJOs. I am studying Spring and Hibernate, and thought posting this bit of historical trivia would be a good starting point. Don’t use it as is, or use it at your own peril.
The ideal persistence mechanism
Ideally, objects would not need to be persisted if memory was non-volatile. Creating objects and establishing associations would suffice. Thus a system would be a soup of objects each having to deal with their own responsibilities and not having to bother about external persistence.
O/R mapping
The closest we get to our ideal persistence is by using an O/R mapping framework such as Hibernate. Typically external persistence is done by saving object state to relational databases. Thus after we create an object we have to persist it. The following steps are typically performed when a user interacts with a web based data entry use case:
- Create new objects (transient) or query existing objects (persistent)
- Begin a transaction
- Change object properties and associations
- Save objects to persistent storage
- Commit the transaction
A simple persistence framework using Hibernate
In our architecture, development is driven by use cases. The flow of events of one or more use cases are orchestrated by a controller object. Each method of a controller object may initiate a new, or participate in an existing, database transaction. The controller saves and retrieves persistent objects using a Hibernate Utility class (yet another, my version of it anyway) which in turn directly uses the Hibernate Session object.
Persistent Objects
Persistent objects inherit from a common root class called PersistentObject as shown below.
/** * Super-class of all basic / entity classes. */ public abstract class PersistentObject implements Serializable { // flag indicating that object is persistent / saved private boolean _saved = false; /** * This method is called when the object is saved to persistent * storage. */ public void onSave() { _saved = true; } /** * This method is called when the object is loaded from persistent * storage. */ public void onLoad() { _saved = true; } /** * This method is used to discover the saved status of the object. * * @return True if the object is exists in persistent storage */ public boolean isSaved() { return _saved; } }
Hibernate Utility needs the isSaved() method to hint a hibernate session on whether an object is persistent. This is required in the special case where the child object has the primary key of the parent object and not a direct reference to it. This is how the Hibernate utility, which needs to implement the Hibernate Interceptor interface, makes use of this method.
public final class HibernateUtil implements MethodInterceptor, Interceptor { ... partial implementation follows /** * If the specified object is an instance of PersistentObject * sets the state of the object to saved. * @see net.sf.hibernate.Interceptor#onLoad(java.lang.Object, * java.io.Serializable, java.lang.Object[], java.lang.String[], * net.sf.hibernate.type.Type[]) */ public boolean onLoad(Object object, Serializable id, Object[] state, String[] propertyNames, Type[] types) throws CallbackException { if (object instanceof PersistentObject) { ( (PersistentObject) object ).onLoad(); } return false; // we did not modify state } /** * If the specified object is an instance of AuditedPersistentObject * sets the dateLastUpdated attribute. */ private boolean setDateLastUpdated(Object object, Object[] state, String[] propertyNames) { if (object instanceof AuditedPersistentObject) { for (int i = 0; i < propertyNames.length; i++) { if ("dateLastUpdated".equals(propertyNames[i])) { state[i] = new Date(); return true; } } } return false; // we did not modify state } /** * @see net.sf.hibernate.Interceptor#onFlushDirty(java.lang.Object, * java.io.Serializable, java.lang.Object[], java.lang.Object[], * java.lang.String[], net.sf.hibernate.type.Type[]) */ public boolean onFlushDirty(Object object, Serializable id, Object[] currentState, Object[] previousState, String[] propertyNames, Type[] types) throws CallbackException { return setDateLastUpdated(object, currentState, propertyNames); } /** * @see net.sf.hibernate.Interceptor#onSave(java.lang.Object, * java.io.Serializable, java.lang.Object[], java.lang.String[], * net.sf.hibernate.type.Type[]) */ public boolean onSave(Object object, Serializable id, Object[] state, String[] propertyNames, Type[] types) throws CallbackException { boolean result = setDateLastUpdated(object, state, propertyNames); if (object instanceof PersistentObject) { ( (PersistentObject) object ).onSave(); } return result; } /** (non-Javadoc) * @see net.sf.hibernate.Interceptor#onDelete(java.lang.Object, * java.io.Serializable, java.lang.Object[], java.lang.String[], * net.sf.hibernate.type.Type[]) */ public void onDelete(Object object, Serializable id, Object[] state, String[] propertyNames, Type[] types) throws CallbackException { } /** (non-Javadoc) * @see net.sf.hibernate.Interceptor#preFlush(java.util.Iterator) */ public void preFlush(Iterator objects) throws CallbackException { } /** (non-Javadoc) * @see net.sf.hibernate.Interceptor#postFlush(java.util.Iterator) */ public void postFlush(Iterator objects) throws CallbackException { } /** * If the object is a PersistentObject returns its saved status. * @return true if the PersistentObject already exists in the database. * @see net.sf.hibernate.Interceptor#isUnsaved(java.lang.Object) */ public Boolean isUnsaved(Object object) { if (object instanceof PersistentObject) { return new Boolean( !( (PersistentObject) object ).isSaved() ); } else { return null; // let Hibernate assume default behavior } } /** * @see net.sf.hibernate.Interceptor#findDirty(java.lang.Object, * java.io.Serializable, java.lang.Object[], java.lang.Object[], * java.lang.String[], net.sf.hibernate.type.Type[]) */ public int[] findDirty(Object object, Serializable id, Object[] currentState, Object[] previousState, String[] propertyNames, Type[] types) { return null; // let Hibernate assume default behavior } /** * @see net.sf.hibernate.Interceptor#instantiate(java.lang.Class, * java.io.Serializable) */ public Object instantiate(Class classObj, Serializable id) throws CallbackException { Object object = null; // let Hibernate assume default behavior return object; } }
Persistent objects that have composite keys must also override the equals and hashCode methods. The equals method must return true if the corresponding primary key attributes of two objects of the same class pass the equals test.
Intercepting objects about to be saved
The onSave method shown in the previous code listing also forms the basis for making changes to objects before they are saved. In our case we need to update the time the object was lasted updated. We have done that by creating a base class called AuditedPersistentObject, for all objects that need this new attribute. The implementation of this class is shown below. In the onSave method of Hibernate Utility we detect whether the object is and instance of this class and set the dateLastUpdated attribute.
/** * This class and it's sub-classes represent persistent objects with * audit information such as the date/hour the object was last updated. */ public abstract class AuditedPersistentObject extends PersistentObject { protected Date dateLastUpdated = null; /** * Recover the date/hour of last update. * @return Date/Hour */ public Date getDateLastUpdated() { return dateLastUpdated; } /** * Set the date/hour of last update. * @param dateLastUpdated Date/hour */ public void setDateLastUpdated(Date dateLastUpdated) { this.dateLastUpdated = dateLastUpdated; } }
Declarative transactions
As mentioned previously, the methods in the controller can initiate transactions. To do this declaratively, we create every controller object using the following method of Hibernate Utility.
/** * This method returns a CGLIB extended object of the * specified class. Each method call on the extended object * results in a callback to the intercept method. * @param c The class to extend. * @return */ public Object extendClass(Class c) { Object newObject = null; newObject = Enhancer.create(c, null, this); return newObject; }
Now when any method of the controller is called, the intercept method of Hibernate Utility is called automatically. For this, Hibernate Utility must implement the net.sf.cglib.proxy.MethodInterceptor interface of CGLIB. The intercept method itself and all the other methods it calls and the attributes they use, are shown below.
// Private attributes private TransactionConfiguration transactions; // List of transactions private SessionFactory sessionFactory = null; // Hibernate Session Factory private int transactionCount = 0; // Number of transactions in progress // Private Thread Local attributes private ThreadLocal session = new ThreadLocal(); // Session local to current thread private ThreadLocal transaction = new ThreadLocal(); // Active transaction local to current thread private ThreadLocal transactionDepth = new ThreadLocal(); // Depth of the active database transaction private ThreadLocal transactionDate = new ThreadLocal(); // The Date transaction was begun /* * Inherited from net.sf.cglib.proxy.MethodInterceptor */ public Object intercept(Object obj, Method method, Object[] args, MethodProxy proxy) throws Throwable { boolean useTransaction; Object retValFromSuper = null; useTransaction = transactions.isTransaction(method); try { if (useTransaction) beginTransaction(); retValFromSuper = proxy.invokeSuper(obj, args); // Call extended method if (useTransaction) commitTransaction(); }catch (Throwable e) { if (useTransaction) rollbackTransaction(); throw e; } return retValFromSuper; } public void beginTransaction() { Integer depth = (Integer) transactionDepth.get(); if (depth == null) { // first call to begin transaction in this thread Session s = (Session) session.get(); if (s == null) { currentSession(); } s = (Session) session.get(); try { Transaction t = (Transaction) s.beginTransaction(); transaction.set(t); transactionDepth.set(new Integer(0)); transactionDate.set(new Date()); incrementTransactionCount(); } catch (HibernateException e) { // TODO throw exception here } } else { // increment depth transactionDepth.set(new Integer(depth.intValue() + 1)); } } public void commitTransaction() { Integer depth = (Integer) transactionDepth.get(); if (depth == null) { // no begin transaction issued } else { if (depth.intValue() == 0) { // reached the outer most call to begin transaction Transaction t = (Transaction) transaction.get(); if (t == null) { // no begin transaction issued or rolled back // TODO throw exception here } else { try { t.commit(); } catch (HibernateException e) { // TODO throw exception here } finally { transaction.set(null); transactionDepth.set(null); decrementTransactionCount(); } } } else { // decrement depth, ignore commit request transactionDepth.set(new Integer(depth.intValue() - 1)); } } } public void rollbackTransaction() { Integer depth = (Integer) transactionDepth.get(); if (depth == null) { // no begin transaction issued } else { Transaction t = (Transaction) transaction.get(); if (t == null) { // no transaction // TODO throw exception here } else { try { t.rollback(); } catch (HibernateException e) { // TODO throw exception here } finally { transaction.set(null); decrementTransactionCount(); closeSession(); } } // decrement depth transactionDepth.set(null); } } public Session currentSession() { Session s = (Session) session.get(); // Open a new Session, if this Thread has none yet if (s == null) { try { s = sessionFactory.openSession(); session.set(s); } catch (HibernateException e) { e.printStackTrace(); // TODO throw exception here } } return s; } public void closeSession() { Integer depth = (Integer) transactionDepth.get(); if (depth != null) { // We are within a transaction, ignore close request } else { try { Session s = (Session) session.get(); session.set(null); if (s != null) { s.close(); } } catch (HibernateException e) { e.printStackTrace(); // TODO throw exception here } } }
The TransactionConfiguration class, used in the intercept method above, parses an XML file that specifies which methods of any class need database transactions. The isTransaction methods of this class return true for methods that need database transactions. See the code listing below for implementation of these methods.
/** * The method returns true if the method of the specified class * is transactional. * @param className Fully qualified name of the class * @param methodName Method name * @return true if the method is specified as transactional. */ public boolean isTransaction(String className, String methodName) { return hasMethod(className, methodName); } /** * The method returns true if the given Method instance * is transactional. * * @param method Method instance * @return true if the Method instance is specified as * transactional. */ public boolean isTransaction(Method method) { boolean val; val = isTransaction(method.getDeclaringClass() .getName(), method.getName()); if (val == false) { // let us check if super classes / interfaces are transactions for (int i = 0; i < method.getDeclaringClass() .getInterfaces().length; i++) { val = isTransaction(method.getDeclaringClass(). getInterfaces()[i].getName(), method.getName()); if (val == true) break; } } return val; }
Hibernate Utility encapsulates the most commonly used Hibernate Session and SessionFactory methods, so you don’t need to obtain a Session by calling the currentSession method and call the methods of the Session.
Declarative transactions using AspectJ
The following aspect can be used to extend desired methods to add declarative transactions.
public abstract aspect TransactionAspect { public abstract pointcut transactedMethods(); Object around() throws SystemRuntimeException : transactedMethods() { boolean useTransaction = false; Object retValFromSuper = null; String methodName = thisJoinPoint.getSignature().getName(); String className = thisJoinPoint.getSignature() .getDeclaringType().getName(); // The TransactionConfiguration determines if a method // should be made transactional or not. useTransaction = TransactionConfiguration.getInstance() .isTransaction(className, methodName); if ( useTransaction ) { System.out.println("TransactionAspect: Method '" + className + "." + methodName + "' is transactional."); try { // begin the transaction. HibernateUtil.getInstance().beginTransaction(); // "proceed()" allows the method to continue as it normally // would. The return value is saved. retValFromSuper = proceed(); HibernateUtil.getInstance().commitTransaction(); return retValFromSuper; } catch (RuntimeException e) { System.out.println("TransactionAspect: Method '" + className + "." + methodName + "' threw an exception."); HibernateUtil.getInstance().rollbackTransaction(); throw e; } } // This means the method was not transactional. System.out.println("TransactionAspect: Method '" + className + "." + methodName + "' is NOT transactional."); // Return the result of the action method as normal. return proceed(); } }
A concrete aspect must extend the abstract aspect above and implement the abstract join point transactedMethods as follows.
public aspect AppTransactionAspect extends TransactionAspect { public pointcut transactedMethods() : (target(PersistentObject) || target(SomeOtherClass)) && execution(public * *( .. )) && !execution(* PersistentObject.*( .. )) && !execution(public * find*( .. )) && !execution(public * get*( )) && !execution(public * set*( .. )); }
The transactedMethods point cut implementation above executes the around advice implemented in the abstract aspect, for all methods of classes that are sub classes of SomeOtherClass and PersistentObject, except the following:
- All methods of the class PersistentObject itself.
- All methods beginning with set.
- All methods beginning with get.
- All methods beginning with find.
Concurrency
While an object is being prepared for updating, the persistent representation of the object in the database may be changed by another transaction. Hibernate automatically adds version number checking to all UPDATE commands if the class mapping has a version element as shown below.
<?xml version="1.0"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN" "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd"> <hibernate-mapping package="test.app"> <class name="Customer" table="CUSTOMER"> <id name="id"> <column name="id" sql-type="integer" not-null="true"/> <generator class="native"/> </id> <version name="version" column="version" type="integer" /> <property name="name"> <column name="name" sql-type="varchar(20)" not-null="true"/> </property> <bag name="orders" table="ORDER" cascade="all"> <key column="customer_id"/> <one-to-many class="Order"/> </bag> </class> </hibernate-mapping>
The application is responsible for checking that the object information it has is not stale before updating the object.
Closing Hibernate sessions
Closing hibernate sessions is a must to liberate JVM heap and avoid an OutOfMemoryError, and more importantly, close database connections. In web applications one useful strategy is to use a servlet filter to close a Hibernate session as shown below.
public class CloseDataSession implements Filter { private static ThreadLocal stackCounter = new ThreadLocal(); // for closing sessions only when exiting from a client request public void destroy() { } public void doFilter(ServletRequest req, ServletResponse resp, FilterChain chain) throws IOException, ServletException { try { increment(); chain.doFilter(req, resp); } finally { if (decrement() <= 0) { HibernateUtil.getInstance().closeSession(); } } } public void init(FilterConfig config) throws ServletException { } private int increment() { int count = 0; if (stackCounter.get() == null) { stackCounter.set(new Integer(++count)); } else { count = ((Integer) stackCounter.get()).intValue(); stackCounter.set(new Integer(++count)); } return count; } private int decrement() { int count = 0; if (stackCounter.get() == null) { stackCounter.set(new Integer(count)); } else { count = ((Integer) stackCounter.get()).intValue(); stackCounter.set(new Integer(--count)); } return count; } }
The filter CloseDataSession is mapped to all server side resources that directly or indirectly access any persistent objects. This mapping is done in the web module descriptor (web.xml) of a J2EE web application. Some application servers execute a filter several times within the same web request, for example, every time when the request is forwarded. To close the Hibernate session only once, we use a simple filter execution counter associated with the current thread. Only when the counter goes to zero do we close the session.
For those adopting Hibernate today
I recommend using Hibernate with Spring, and using annotations instead of manually coding configuration files.
Filed under: Java
